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Mixture factor analysis is examined as a means of flexibly estimating nonnor-

mally distributed continuous latent factors in the presence of both continuous

and dichotomous observed variables. A simulation study compares mixture factor

analysis with normal maximum likelihood (ML) latent factor modeling. Different

results emerge for continuous versus dichotomous outcomes. For dichotomous

outcomes, normal ML path estimates have bias that worsens as latent factor

skew/kurtosis increases and does not diminish as sample size increases, whereas

the mixture factor analysis model produces nearly unbiased estimators as sample

sizes increase (500 and greater) and offers near nominal coverage probability. For

continuous outcome variables, both methods produce factor loading estimates with

minimal bias regardless of latent factor skew, but the mixture factor analysis is more

efficient. The method is demonstrated using data motivated by a study on youth
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MIXTURE FACTOR ANALYSIS 277

with cystic fibrosis examining predictors of treatment adherence. In summary,

mixture factor analysis provides improvements over normal ML estimation in the

presence of skewed/kurtotic latent factors, but due to variability in the estimator

relating the latent factor to dichotomous outcomes and computational issues, the

improvements were only fully realized, in this study, at larger sample sizes (500

and greater).

Typically, for estimation purposes, latent factor measurement models and struc-

tural equation models in general assume the underlying latent factors are nor-

mally distributed. This normality assumption is most certainly not always true for

real problems (Micceri, 1989) and assuming it is may lead to incorrect inference

for model parameters. The purpose of this article is to examine the performance

of using mixture models, specifically the “mixture factor analysis model” (B.

Muthén, 2007, p. 3), as a means of weakening the distributional assumptions for

the underlying latent factors and thus potentially robustifying the parameter esti-

mation. The current study considers both continuous and dichotomous observed

outcome variables that are manifest from an underlying continuous latent factor.

The inclusion of both is of interest because nonnormality of the latent factors

may differentially impact estimation of the linear relationship between a latent

factor and a continuous outcome versus the nonlinear relationship between a

dichotomous observed outcome variable and the latent factor.

Mixture models have become increasingly popular in the social sciences and

public health research as an analytic approach for describing underlying latent

subgroups in populations that may exhibit specifically distinct patterns across

variables and relationships among them. In particular, growth mixture models

(B. Muthén et al., 2002; B. Muthén & Shedden, 1999; Nagin, 1999; Verbeke

& Lesaffre, 1996) have received a lot of attention as have factor and structural

equation modeling mixture models (Arminger & Stein, 1997; Dolan & Van der

Maas, 1998; Jedidi, Jagpal, & DeSarbo, 1997; Lee & Song, 2003; Lubke &

Muthén, 2005; Yung, 1997; Zhu & Lee, 2001). In his overview of hybrid latent

variable models (i.e., models including both categorical and continuous latent

variables), B. Muthén (2007) provides a taxonomy of the different types of

mixture models. In the current article we examine the so-called mixture factor

analysis model, which assumes measurement invariance for the continuous latent

factor but incorporates a mixture model (i.e., an underlying categorical latent

class variable) for the continuous latent factor.

Commonly, the goal of mixture modeling is to identify distinct latent sub-

groups that make up a supposed heterogeneous population. In contrast, this

article uses mixture models solely as a means to flexibly model distinctly

nonnormal latent factor distributions. Finite mixtures (McLaclan & Peel, 2000;

Titterington, Smith, & Makov, 1985) are useful to approximate intractable or

complex distributions with a small number of simpler component distributions.
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278 WALL, GUO, AMEMIYA

In particular, finite mixtures of normal distributions have been used extensively,

especially in the statistical literature, as a mathematical tool to approximate non-

normal, generally complex continuous distributions (Carroll, Roeder, & Wasser-

man, 1999; Escobar & West, 1995; Richardson & Green, 2002; Sorenson &

Alspach, 1971; for a review see McLachlan & Peel, 2000). Bauer and Curran

(2003, 2004) and Bauer (2007) provide excellent expositions describing the

difficulties of discerning from data whether the mixtures represent true distinct

underlying groups or just an approximation to a homogeneous but nonnormally

distributed underlying group. Indeed, Bauer (2007) is particularly critical of the

almost solitary use of mixture models for the purpose of identifying underlying

subgroups when it is likely there are often no true subgroups in the population

but just an arbitrary nonnormally distributed continuum. Our goal is to use a

mixture factor analysis model that can approximate the unknown latent factor

distribution well enough to ensure correct estimation and inference for the other

parameters in the model.

The basic idea of using mixtures of normals to approximate a nonnormal

continuous distribution is demonstrated in Figure 1 where a right skewed dis-

tribution, a standardized chi-square distribution with 1 degree of freedom, is

overlaid with the best fitting normal (upper left) and the best fitting mixture of

2, 3, and 4 normals, respectively. Details of the method are described later, but

as can be seen from the figure, as more components are added, the aggregation

of the mixtures appears more similar to the target chi-square distribution. Indeed

with enough components, the mixture distribution can be made arbitrarily close

to the target distribution (Sorenson & Alspach, 1971).

As a motivating example, we consider a study of adolescents with cystic

fibrosis that examined the effects that stressors and supports (social, familial,

and personal) have on adherence to treatment regimes. Self-report questionnaire

data were collected with multiple items intended to measure several different

dimensions of stressors and supports as well as adherence behavior (Patterson,

Wall, Berge, & Milla, 2009). Here we focus on the conceptual variable “illness-

strains” and how it affects the dichotomous indicator of whether or not the patient

adheres to treatment. The variable illness strain is modeled as a continuous

latent variable underlying three measured variables labeled “emotional strains,”

“appearance worries,” and “physical strains.” Figure 2A and 2B presents a

graphical representation of the model where covariates, gender and age, are

either included or not.

The potential limitation of the commonly used estimation method (normal

maximum likelihood) for the structural equation model in Figure 2A and 2B

is that it assumes the latent factor f representing illness strains is normally

distributed. This assumption is likely unrealistic because the researchers expect a

priori a right skewed distribution for illness strains among the sample where most

adolescents will be in the low to moderate range but also a substantial minority
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MIXTURE FACTOR ANALYSIS 279

FIGURE 1 Comparison of a standardized chi-square distribution with 1 degree of freedom

to the best fitting normal, 2-, 3-, and 4-component mixtures of normal models. Best fitting

models are based on respective maximum likelihood estimates to a random sample of n D
50,000 observations from the standardized chi-square distribution. For df D 1, the mean D
1 and standard deviation D

p
2 are used to standardize the chi-square distribution.

will exhibit extreme levels of the latent factor. Simulated data mimicking that

found in the original study is shown in Figure 3 where the three measurements

for illness-related strains and worries are skewed and kurtotic. If we take Y1,

Y2, and Y3 to be linearly related to the latent factor, then it is probably not

reasonable to assume the latent factor is itself normally distributed.

In this current article we weaken the normality assumption for the latent

factor by instead assuming that it follows a mixture of normal distributions

through the use of a mixture factor analysis model. A simulation study is used to
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280 WALL, GUO, AMEMIYA

(a)

(b)

FIGURE 2 Models relating illness strains (a continuous latent factor f ) in children with

cystic fibrosis to nonadherence to treatment (a dichotomous observed variable U ). A. Basic

latent factor model, B. Adjustment for covariates, C. Inclusion of mixtures (latent classes c)

to flexibly model the distribution of illness strains, D. Inclusion of mixtures and covariates.

Additional single-headed arrows pointing to continuous variables, Y1, Y2 , Y3, and latent

factor f , represent measurement and equation errors. Following Mplus graphical notation,

no separate error arrows are drawn for categorical variables U or latent c due to inseparability

between mean and variance for categorical outcomes. (continued )
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MIXTURE FACTOR ANALYSIS 281

(c)

(d)

FIGURE 2 (Continued).
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282 WALL, GUO, AMEMIYA

FIGURE 3 Histograms of data (n D 500) for simulated cystic fibrosis illness strains

example.

investigate the performance of the mixture factor analysis under varying amounts

of skew and kurtosis of the underlying factor. Of practical interest is whether it

is necessary in the first place to worry about the lack of normality and so we

also extensively compare the mixture factor analysis results with the traditional

maximum likelihood (ML) solution, which assumes the latent factor is normally

distributed. In particular we examine and contrast estimates and inference for

the paths relating the latent factor to continuous and dichotomous observed

indicators. Practical recommendations are made based on simulation results

including the choice of the number of mixture components. Implementation

of the mixture factor analysis approach is demonstrated using Mplus.

THE MIXTURE FACTOR ANALYSIS MODEL

For concrete illustration, we consider a model for the the cystic fibrosis illness

strains example, but the modeling framework can be extended straightforwardly

to problems with more observed indicators, covariates, and outcomes. Our work-

ing assumption is that the relationship between the latent factor “illness strains”

and its indicators, covariates, and main outcome nonadherence is homogeneous

across the population. The mixture factor analysis model proposed here solely

targets the distribution of the latent factor in order to provide a more flexible

distributional form than normality. The model is made up of two parts: (a) a

typical measurement model relating observed indicators and outcomes to an

underlying continuous latent factor and covariates that is invariant across all

components of the latent factor mixture and (b) a K-component normal mixture

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 1
2:

08
 0

5 
A

pr
il 

20
12

 



MIXTURE FACTOR ANALYSIS 283

model for the underlying latent factor incorporating covariates into the proba-

bilities and the means of each component. The K-component normal mixture

is operationalized using a K-category latent class variable (latent categorical

variable) directly influencing the continuous latent factor.

Measurement Model

We begin by defining the measurement model, which remains fixed regardless of

how the latent factor distribution is specified. In other words, the measurement

model parameters, which include the factor loadings, intercepts, error variances,

and coefficients relating covariates to observed indicators, are held invariant

across the multiple mixture components that are specified for the latent factor

fi .

Let Yi D .Y1i ; Y2i ; Y3i/ be the three observed scales shown in Figure 3 for

each individual i . It is assumed that these continuous observed measures are

linearly related to a single underlying latent factor f plus error through the

usual linear factor model, that is,

0

@

Y1i

Y2i

Y3i

1

A D

0

@

�01

�02

0

1

A C

0

@

œ1

œ2

1

1

A fi C

0

@

–1i

–2i

–3i

1

A ; (1)

where the measurement errors have mean 0 and are uncorrelated with one

another, that is, E.–j i / D 0, Cov.–j i ; –j 0i / D 0 for j ¤ j 0 with variance

Var.–j i / D ™j , j D 1; 2; 3. The measurement errors –j i are assumed to be

normally distributed. Note that the intercept and factor loading for Y3 are fixed

to 0 and 1, respectively, for identifiability of the mean and scale of the latent

factor f . The choice of fixing the parameters for Y3 rather than Y1 or Y2 is

arbitrary.

The main outcome of interest, nonadherence, which is being predicted by the

latent variable can also be considered part of the measurement model because it

is directly linked to the latent factor f . Specifically, the dichotomous indicator of

nonadherence to treatment, Ui , is assumed to have probability  i that is related

to the illness strains latent factor, fi , and observed covariates gender (X1i ) and

age (X2i ) through a log odds or “logit” relationship, that is,

Ui � Bernoul li. i / (2)

log

�

 i

1 �  i

�

D £0 C ”ufi (3)

log

�

 i

1 �  i

�

D £0 C ”ufi C “1X1i C “2X2i ; (4)
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284 WALL, GUO, AMEMIYA

where Equation (2) is combined with either Equation (3) or Equation (4) de-

pending on whether covariates are included (Figure 2). The Bernoulli-logit

measurement relationship between the dichotomous observed variable and the

latent factor specified earlier follows the same form as the commonly used two-

parameter logistic item response theory model (Embretson & Reise, 2000). A

directly related formulation for dichotomous outcomes (Kamata & Bauer, 2008;

Takane & de Leeuw, 1987) can be considered using the probit link and assuming

an intermediate underlying continuous variable U � exists that relates U to f

(B. Muthén, 1984; B. Muthén, du Toit, & Spisic, 1997) and would be expected

to yield similar results. We note that there is not a separate measurement error

included for the dichotomous outcome Ui (i.e., following graphical notation

similar to that used by Mplus for dichotomous outcomes, in Figure 2 there is no

error term pointing to U ). The measurement error in Ui is not modeled separately

from the mean structure due to the fact that the variance of Ui (i.e.,  i �.1� i //

is a direct function of its mean  i . Finally, similar to the linear factor model

in Equation (1), the model parameters, £0, ”u, “1, “2 for the relationships with

dichotmous U are held invariant across the multiple mixture components that

are specified for the latent factor fi in the next section.

Normal Mixtures for the Latent Factor

Now we describe the specification of the latent factor distribution f . Figures 2A

and 2B are drawn to represent traditional factor models in which the distribution

of fi or the conditional distribution of fi given covariates is assumed to be

normal, that is,

fi � N.’0; §/ (Figure 2A)

fi D ’0 C ”1X1i C ”2X2i C •i and •i � N.0; §/ (Figure 2B)

) fi jX1i ; X2i � N.’0 C ”1X1i C ”2X2i ; §/:

Next, the distribution of f is made more flexible by assuming it follows a

mixture of K normal distributions. The introduction of mixture components is

illustrated in Figures 2C and 2D by the latent categorical variable c, which is

pointing to the latent factor f . This latent class variable can take on any one

of K different values for each individual i with P.ci D k/ D ˜k , such that
PK

kD1 ˜k D 1. In other words, the distribution of f is taken to be a mixture

of K components (recall Figure 1) where ˜k is the marginal probability of each

component (i.e., probability of each latent class). In the case with covariates

(Figure 2D), besides their effect on fi , we also allow the possibility that the

covariates influence the probability of being in any one of the latent categories,
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MIXTURE FACTOR ANALYSIS 285

such that P.ci D kjX1i ; X2i / D ˜ik . The mixture model is then formed

by assuming for each category of ci that the latent factor follows a normal

distribution with different mean (and possibly different variance), that is,

fi jci D k � N.’0k; §k/; k D 1 : : : K (Figure 2C)

) fi �

K
X

kD1

˜kN.’0k; §k/

fi jci D k; X1i ; X2i � N.’0k C ”1X1i C ”2X2i ; §k/; k D 1 : : : K (Figure 2D)

) fi �

K
X

kD1

˜ikN.’0k C ”1X1i C ”2X2i ; §k/

where log

�

˜ik

1 � ˜ik

�

D ’ck C ”c1X1i C ”c2X2i :

Previously, we have written the mixture model distributions for fi in conditional

form, that is, fi jci conditioned on the component ci , and in marginal form, that

is, summing or aggregating across all categories of ci . This distinction is useful

as it points to the difference in focus between using the mixture model for

purpose of identifying underlying clusters (conditional model) versus using it

for the purpose of simply providing a more flexible distribution for fi (marginal

model). Consistent with our goal of providing a flexible distribution for fi

without focusing on the components per se, we have made the assumption that

X1i and X2i relate to the latent factor fi in the same way regardless of the latent

component ci , that is, ”1 and ”2 do not have k subscripts. Furthermore, although

the model allows for the covariates to predict the probability of latent class mem-

bership, those paths from the covariates to the mixture component (i.e., ”c1 and

”c2) will not be of primary interest because in this article we are not interested

in any one component but instead the aggregation across the components.

Obtaining the Marginal Mean and Variance of a

Normal Mixture

Consider again Figure 1. The skewed distribution shown there with the mixture

of normals models overlayed represents an example of the true and fitted models

for a latent factor f . The true population distribution for the latent factor in this

illustration is a standardized chi-square distribution with 1 degree of freedom.

This distribution has skew D 2.8 and kurtosis D 12 (Johnson & Kotz, 1982).

Because it has been standardized (by subtracting 1 and dividing by sqrt(2)—

recall the mean and variance of a chi-square distribution equal the df and 2*df,
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286 WALL, GUO, AMEMIYA

respectively), it has mean D 0 and standard deviation D 1. For demonstration

n D 50,000 random samples from the standardized chi-square distribution were

generated. In the first case (upper left plot in Figure 1) where a normal model

is assumed for f , the estimated mean and variance of the best fitting normal

distribution are both very close to 0 and 1 but we see that the symmetric normal

distribution is poorly capturing the skewed nature of the chi-square. In the case

where a 2-component normal mixture is assumed, that is, fi � ˜1N.’01; §1/ C

˜2N.’02; §2/, the best fit for the 2-component mixture finds the first normal

component to have mean ’01 D �:21 with probability ˜1 D 0:93 and the second

component to have mean ’02 D 2:80 with probability ˜2 D :07. A simplifying

assumption is made when fitting the mixture models that the variances within

each component are equal, that is, §1 D §2 D §. Both normal components are

estimated to have variance § D 0:41. The resulting parameter estimates, that is,

mixing proportions ˜ D .˜1; : : : ; ˜K /, component means ’0 D .’01; : : : ; ’0K/,

and component variance §, for the 3- and 4-component mixture models are as

follows:

3 components ˜ D .:86; :12; :02/; ’0 D .�:32; 1:58; 4:34/; § D :23I

4 components ˜ D .:81; :14; :04; :01/; ’0 D .�:38; 1:07; 2:83; 5:55/; § D :15:

So we see that the right skewed nature of the true f is captured using the

mixture models by a dominant (large probability) normal component centered

near the mode and other smaller components with larger means to capture the

right skew.

Furthermore we can obtain the estimated mean and variance for the marginal

(aggregated) distribution for f from the mixture model component estimates.

For example, for the 2-component model, E.f / D ˜1’01C˜2’02 and Var.f / D
˜1.§1 C ’2

01/ C ˜2.§2 C ’2
02/ � E.f /2, so from the fitted model we have an

estimated mean of 0:93 � .�:21/ C 0:07 � .2:80/ � 0 and estimated variance of

0:93 � .:41 C .�:21/2/ C :07 � .:41 C 2:802/ � 1. Hence, the estimated mean

and variance of the aggregated 2-component mixture distribution are close to 0

and 1, which appropriately matches the mean and variance of true standardized

chi-square population distribution for f . Similar calculations can be done for

the 3- and 4-component mixture models and find their means and variance close

to 0 and 1 as well.

ESTIMATION FOR MIXTURE FACTOR ANALYSIS

Given a parametric distribution for the latent factor fi whether it be normal or a

mixture of normals, estimation for all parameters in the models in Figure 2 can

be obtained via maximum likelihood. Because of its usefulness as a method for
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MIXTURE FACTOR ANALYSIS 287

obtaining maximum likelihood estimates in the presence of missing data, and be-

cause the mixture factor analysis model can be operationalized straightforwardly

as a missing data problem where latent class membership, ci , is the “missing

data,” the expectation maximimization (EM) algorithm is commonly used for

estimation in mixture models. The EM algorithm is an iterative method such that

in the E-step of the t-th iteration, the conditional expectation of the complete

data log-likelihood is evaluated as an integral over latent fi and ci , and in the

M-step this expectation is maximized to obtain the t C 1st parameter estimates.

The steps are iterated until there is negligible change in the t th compared with

t C 1st parameter estimates.

A substantially difficult computational problem is introduced into the EM

algorithm when the form of the model is such that there is not a closed form

solution to the integral in the E-step (Pinhero & Bates, 1995). Indeed, because

of the nonlinear (logistic) relationship between the dichotomous observed vari-

able and the latent factor f , a numerical integration method must be used

to approximate the integral because there is not a closed form. The basic

idea of numerical integration of a function is to use a weighted sum of the

function evaluated over a set of integration points representing values of the

latent factor. Gauss-Hermite quadrature approximation, which uses the normal

distribution to calculate the weights, can be used for the integration and is a

method implemented by default in Mplus 6.11 (L. K. Muthén & Muthén, 1998–

2010) for the E-step. The weighted sum from the E-step is then maximized

in the M-step and in Mplus this maximization is done using a combination

of Quasi-Newton and Fisher scoring methods. A comprehensive exposition of

details for computational methods used in maximum likelihood estimation is

found in Skrondal and Rabe-Hesketh (2004, Chapter 6).

Robust standard errors can be calculated based on the “sandwich formula”

(Freedman, 2006; Huber, 1967), which is a general method for estimating the

covariance matrix of parameter estimates that does not rely on distributional

assumptions or independence of the observations. The standard errors are called

robust because they are consistent even when distributional assumptions under-

lying the original parameter estimates are incorrect. These standard errors can

be directly obtained from Mplus.

The Mplus programs for fitting a mixture factor analysis with four latent

class components with and without covariates are shown in the authors’ personal

online appendix available at www.columbia.edu/�mmw2177.

Computational Issues

Implementation of the EM algorithm described earlier that incorporates numer-

ical integration to handle the nonlinear link due to the dichotomous outcome

can lead to several types of computational difficulties. First, Gauss-Hermite

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 1
2:

08
 0

5 
A

pr
il 

20
12

 



288 WALL, GUO, AMEMIYA

quadrature is limiting in terms of the number of dimensions it can practically

and accurately integrate. In our working example throughout this article, there

is only one underlying latent factor (one dimension) and by default Mplus takes

15 integration points to approximate the integral. Increasing to two latent factors

means that 15 � 15 D 225 integration points are taken and thus computation

time increases exponentially as the number of factors increases. The Mplus 6

manual (L. K. Muthén & Muthén) notes repeatedly that “numerical integration

becomes increasingly more computationally demanding as the number of factors

and the sample size increase” (e.g., Ex 5.3, p. 59).

Second, mixture models are notorious for exhibiting multimodal and relatively

flat likelihoods (McLachan & Peel, 2000). As such, it is possible for the EM

algorithm to converge to a local rather than global maximum. Hence it is

commonly recommended (McLachan & Peel, 2000) and, in fact, is the default in

most softwares that perform mixture models (including Mplus) to use multiple

starting values for the EM algorithm and then choose the estimates that lead to

the largest likelihood. A summary of the number of times out of all the different

starting values that the same maximum likelihood solution was reached can

be taken as an indication of the complexity of the likelihood surface. Indeed

if the same solution is obtained no matter what the starting values were then

the likelihood was not difficult to maximize and vice versa. As detailed earlier,

Mplus provides options for increasing the number of different random starting

values and it refits the model for each set. It also identifies the maximum

likelihood value associated with those fits and indicates if the best log-likelihood

value was or was not replicated.

Finally, degenerate cases with zero probability estimated for one of the

components or cases where 2 components have the same mean can occur. This

boundary value phenomenon is not necessarily a problem because it can simply

be an indication that too many mixture components are being fit to the data.

Increasing the Number of Components

As was seen in Figure 1, in general by adding more components to the mixture

model, it is possible to better approximate the true distribution. But there are

at least three problems with thinking “more is better” when it comes to data

analysis with mixture models. The first is to remember that we do not observe

the latent factor distribution. Indeed Figure 1 is a bit misleading because it may

give the impression that we are fitting a mixture model to a distribution we can

observe, but in real applications we do not observe the latent factor f , so it is

not possible to directly compare the true f with its fitted distribution to verify

if it “fits” well. The second reason that more components may not be better is

lack of information in the finite sample. As was mentioned earlier, the likelihood

surface for mixture models is commonly multimodal implying several solutions
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MIXTURE FACTOR ANALYSIS 289

(i.e., sets of parameter estimates) may fit the data equally well or at least very

similarly. As the number of components increases, the multimodality of the

likelihood increases making the estimation that much more difficult. The third

reason is it may simply not be necessary to approximate the distribution any

better if the focus of the research question is on other model parameters. This is

the most practical of all the reasons and gets to the heart of the robustness issue

and the motivation for our simulation study. Considering the distribution of the

latent factor f a nuisance, the target parameters of interest in the model (e.g.,

”u) may be well estimated as long as the mixture model approximates f “close

enough.” This idea of “close enough” is not made exact but is investigated via

the simulation study.

A number of statistical criteria have been proposed to facilitate selecting the

number of components in a mixture model. Information criteria are commonly

used: Akaike Information Criterion (AIC; D �2logL C 2p), Bayesian Informa-

tion Criterion (BIC; D �2logL C plogN ), and the sample-size adjusted BIC

(ABIC) where the sample size N in the BIC is replaced by n� D .N C 2/=24

(Sclove, 1987). These indices are based on the value of likelihood function

(L), so they reward models that more accurately reproduce the observed data

and extract a penalty for the number of parameters (p) in the model, favoring

models with fewer mixture components. They are commonly used in choosing

the number of components in mixture models, and simulation studies focused

on latent class and growth mixture models have found both BIC and ABIC

outperformed other tests for choosing the number of components (B. Muthén,

2007; Nylund, Asparouhov, & Muthén, 2007). In the following simulation study,

in addition to comparing across different fixed number of components, we

compare with a model where K is chosen using BIC.

SIMULATION STUDY

We set up a simulation study to investigate the performance of mixture factor

analysis as a means of estimating target parameters in the presence of non-

normality of the latent factor. An important related issue is the robustness (or

nonrobustness) to nonnormality exhibited by the traditional maximum likelihood

method, which assumes normality for the latent factors. Thus, we compare the

performance of the mixture factor analysis with 2-, 3-, or 4-component mixtures

of normals with the traditional maximum likelihood assuming the underlying

factor is normally distributed. The model that assumes the underlying factor is

normally distributed can be considered a degenerate mixture, that is, a mixture

factor analysis with only 1 component.

The simulation study focuses on the basic 1-factor model with 3 continuous

indicator variables and 1 dichotomous outcome variable as in Figure 2A albeit

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 1
2:

08
 0

5 
A

pr
il 

20
12

 



290 WALL, GUO, AMEMIYA

with varying true distributions for f . It is of interest to see how the performance

of the mixture factor analysis varies with respect to the degree of nonnormality of

the latent factor (and consequently the observed variables) and the sample size.

Varying measurement errors relating the continuous indicators to the underlying

factor were also examined as a simulation factor. Patterns of results across

varying levels of measurement error were similar to those presented later and

are not included for simplicity of presentation (additional results available from

the authors).

Three latent factor distributions were considered: High skew/kurtosis (stan-

dardized Beta (.1,30)), Mild skew/kurtosis (standardized chi-square(1 df)), and

No skew/kurtosis (standardized normal). For each latent factor distribution we

considered four different sample sizes: 100, 200, 500, and 1,000. Under each

of these 12 (3 latent distributions * 4 sample sizes) scenarios, we generated

200 data sets from models (1), (2), and (3). The specific model parameters

were fixed as £0 D �0:5 and ”u D 1 for the logistic relationship between the

dichotomous outcome and the latent factor and �01 D �02 D 0 and œ1 D :7

and œ2 D :8 for the linear factor model (1). The latent factor under every

scenario was generated to have mean equal to zero and variance equal to 1

albeit with different distributions (Beta, chi-square, or normal). Finally, the

three measurement errors in model (1) were generated from independent normal

distributions with mean equal to 0 and equal variances ™ D 0:5 corresponding to

a reliability for the sum of the continuous observed variables of approximately

0.80 (i.e., .0:7 C 0:8 C 1/2=Œ.0:7 C 0:8 C 1/2 C 3 � 0:5� � 0:8).

Generating Nonnormal Data

The choice of Beta (.1,30) and chi-square with 1 df distributions for the true

latent factor distributions represent two different levels of right skew with pos-

itive kurtosis (high peakedness). Mattson (1997) summarized two methods for

generating nonnormal data: Method A where multivariate nonnormal data are

generated directly to have the desired level of skew/kurtosis and given covariance

matrix and Method B where the multivariate nonnormal data are generated from

a latent variable model where the components of the model (i.e., the latent factors

and errors) come from specific distributions. It was argued (and developed) by

Mattson that Method B is preferred for simulations because it provides a “truth”

that can be compared with in terms of modeling. Indeed other authors (Reinartz,

Echambadi, & Chin 2002) refer to Mattson’s Method B simply as “Mattson’s

method” and advocate for it.

In this study we use Mattson’s method (Method B). But as Mattson (1997)

pointed out, “an apparent limitation : : : is that univariate distributions with

more extreme values of skewness and kurtosis must be used to match certain

values of skewness and kurtosis of the observed variables” (p. 371). In this
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MIXTURE FACTOR ANALYSIS 291

study, this is exactly what leads us to use the highly skewed and kurtotic Beta

(.1,30) and chi-square (1 df) distribution for the underlying latent factor. Indeed

the population skew/kurtosis for a Beta (.1,30) is 6/52 and for a chi-square

with 1 df is 2.8/12 (Johnson & Kotz, 1982). Nevertheless, the finite sample

generated latent factor and the associated observed Y variables are not nearly as

skewed/kurtotic. Table 1 shows the actual sampling distribution of the estimated

skew and kurtosis across the 200 simulated data sets in each of the 12 scenarios

considered. We observe that as the sample size decreases, the observed skew and

kurtosis for the generated latent factors are much smaller than the population

values (Reinartz et al., 2002). Moreover, because random normal measurement

error is added to the latent factors to obtain the Yj , the skew/kurtosis for the Yj

is even less. For example at a sample of size 100, the observed Y3 variable under

Beta (.1,30) has a median skew of 2.0 with a 5th to 95th percentile ranging from

0.5–4.4, and Y3 using the chi-square (1 df) distribution for the latent factor has

a median skew of 1.2 ranging from 0.5–2.4 across the 200 simulated data sets.

Similarly the median kurtosis for Y3 generated from the model with latent factor

distribution Beta (.1,30) and n D 100 is 7.1 ranging from 0.9–28.1 and with

chi-square (1 df) latent factor leads to a median kurtosis for Y3 of 2.2 with 5th to

95th percentile 0.3–10.8. Thus, although the population distribution for the latent

factor is the same across the different sample sizes, the skew and kurtosis of the

sample latent factor and observed variables are smaller and are quite variable.

Estimated Parameters and Inference

In the illness strains example, the ”u is the main target parameter of interest

to the researchers, that is, it represents how the latent illness strains relate to

nonadherence to the treatment. Furthermore, it is a parameter that is part of a

nonlinear relationship (the logit link); hence it may be affected by nonnormality

differently than the other linear factor loadings, for example, œ1, in model (1).

Thus our presentation of results compares and contrasts the parameter estimation

for ”u and also one of the linear factor loadings œ1.

Four models—3 mixture factor analysis models with 4, 3, or 2 latent classes

(labeled 4, 3, and 2) and the normal factor model (labeled 1)—were applied for

parameter estimation and inference to each of the 200 simulated data sets under

each of the 12 scenarios. One hundred different random starting values were used

and the model with the largest likelihood value was chosen. Robust standard

errors were used and 95% Wald-type confidence intervals were obtained using

estimate ˙ 1.96*(standard error). It is of interest to see how much improvement

or deterioration in estimation comes from adding more components in the

mixture factor analysis approach. A maximum of 4 components was taken due

to a combination of computational difficulties and diminishing returns seen for

adding more.
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Bias of the estimators. Summaries of the estimated path, O”u for the

dichotomous outcome, and loading Oœ1 for a continuous indicator under the 12

scenarios across the 200 simulated data sets are shown in Table 2. Focusing

first on the results for O”u representing the nonlinear relationship between the

dichotomous outcome and the latent factor, we compare the side-by-side box-

plots of the different estimators in Figure 4. We find that in both cases of high

and mild skew/kurtosis, the normal factor model exhibits downward bias (i.e.,

mean estimated values less than the true value of 1) that persists even as the

sample size increases. Because this bias does not decrease as the sample size

increases, this indicates statistical inconsistency for the normal factor analysis

estimator in the presence of nonnormality. On the other hand, the mixture

TABLE 2

Simulation results. Empirical bias, standard deviation (SD), root mean square error

(RMSE), and 95% coverage probability for estimators of ”u (top) and œ1 (bottom)

High Skew/Kurtosis

Beta (.1, 30)

Mild Skew/Kurtosis

¦2

1

No Skew/Kurtosis

Normal

K n D 100 200 500 1,000 n D 100 200 500 1,000 n D 100 200 500 1,000

True ”u D 1

Bias 1 �0.23 �0.23 �0.22 �0.24 0.00 �0.06 �0.07 �0.07 0.11 0.02 0.02 0.01

2 0.04 �0.01 �0.05 �0.09 0.14 0.02 0.00 �0.02 0.10 0.02 0.02 0.01

3 0.31 0.13 0.04 �0.02 0.17 0.04 0.01 �0.01 0.12 0.02 0.02 0.01

4 0.39 0.20 0.09 0.02 0.17 0.04 0.00 0.00 0.11 0.02 0.02 0.01

SD 1 0.42 0.26 0.16 0.12 0.39 0.24 0.14 0.09 0.44 0.24 0.15 0.10

2 0.64 0.37 0.25 0.18 0.53 0.32 0.17 0.11 0.44 0.25 0.15 0.10

3 0.96 0.51 0.30 0.19 0.56 0.34 0.17 0.11 0.46 0.25 0.15 0.11

4 1.12 0.70 0.33 0.20 0.55 0.33 0.16 0.11 0.48 0.25 0.16 0.11

RMSE 1 0.48 0.34 0.27 0.27 0.39 0.25 0.16 0.12 0.45 0.24 0.15 0.10

2 0.64 0.37 0.25 0.21 0.55 0.32 0.17 0.11 0.45 0.25 0.15 0.10

3 1.01 0.52 0.30 0.19 0.59 0.34 0.17 0.11 0.47 0.25 0.15 0.11

4 1.18 0.72 0.34 0.20 0.58 0.33 0.16 0.11 0.49 0.25 0.16 0.11

Coverage Prob 1 0.79 0.77 0.64 0.39 0.96 0.91 0.93 0.92 0.93 0.96 0.97 0.96

2 0.90 0.91 0.88 0.81 0.97 0.94 0.96 0.96 0.93 0.96 0.95 0.95

3 0.89 0.94 0.95 0.90 0.96 0.95 0.97 0.97 0.95 0.96 0.95 0.95

4 0.88 0.95 0.96 0.94 0.96 0.95 0.97 0.97 0.91 0.96 0.97 0.96

Trueœ1 D 0:7

Bias 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

SD 1 0.17 0.10 0.06 0.04 0.12 0.08 0.05 0.04 0.11 0.08 0.05 0.04

2 0.13 0.08 0.05 0.03 0.11 0.08 0.05 0.03 0.11 0.08 0.05 0.04

3 0.14 0.08 0.05 0.03 0.11 0.08 0.04 0.03 0.12 0.08 0.05 0.04

4 0.14 0.08 0.05 0.03 0.11 0.07 0.04 0.03 0.13 0.08 0.05 0.04

RMSE 1 0.17 0.10 0.06 0.04 0.12 0.08 0.05 0.04 0.11 0.08 0.05 0.04

2 0.13 0.08 0.05 0.03 0.11 0.08 0.05 0.03 0.11 0.08 0.05 0.04

3 0.14 0.08 0.05 0.03 0.11 0.08 0.04 0.03 0.12 0.08 0.05 0.04

4 0.14 0.08 0.05 0.03 0.11 0.07 0.04 0.03 0.13 0.08 0.05 0.04

Coverage Prob 1 0.94 0.94 0.95 0.94 0.93 0.94 0.97 0.96 0.97 0.96 0.95 0.98

2 0.83 0.90 0.92 0.94 0.92 0.91 0.96 0.96 0.97 0.96 0.95 0.98

3 0.83 0.90 0.92 0.92 0.92 0.91 0.96 0.94 0.97 0.96 0.97 0.98

4 0.82 0.89 0.91 0.93 0.92 0.92 0.94 0.96 0.94 0.97 0.97 0.97

Note. Estimates are summarized across 200 simulated datasets under 12 scenarios (4 sample sizes times 3 latent distributions)

based on mixture factor analysis with K D 1, 2, 3, or 4 components where K D 1 refers to the normal distributed latent factor

model.
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FIGURE 4 Boxplots of estimated ”u (log odds ratio relating U to f ) across 200 simulated

data sets within each of 12 scenarios (4 sample sizes times 3 latent distributions) using

mixture factor analysis with 4, 3, 2, or 1 components (i.e., 1 D the normal factor model).

True ”u D 1. Horizontal bar within each boxplot represents the median and the box itself

denotes the 25th and 75th percentiles. Estimates deviating above or below the 25th and 75th

percentiles by more than 1.5 times the interquartile range are shown with points. Note y-axis

scale change in top graphs compared with bottom graphs. Average (i.e., median) skew (s)

and kurtosis (k) values (taken from Table 1) associated with the simulated Y3 variable are

included to help facilitate interpretation due to varying values across different scenarios.

factor analysis models are correcting the bias to varying degrees depending

on the sample size, degree of skewness, and number of components. For ex-

ample, with high skew/kurtosis and a sample of size 1,000, the normal factor

model has substantial empirical bias (i.e.,
P

. O”u � 1/=200) equal to �0.24,
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MIXTURE FACTOR ANALYSIS 295

whereas the mixture factor analysis with 4 latent classes has empirical bias

equal to 0.02, much closer to zero. In the case of n D 100 and 200 in the

presence of high skew/kurtosis, as more components are added in the mix-

ture factor analysis we find that median bias improves (horizontal lines shown

within boxplots in Figure 4 are closer to 1 with more components), but mean

bias (i.e., the usual definition of bias) increases. This is a direct result of the

right skew found in the mixture factor analysis estimator that is accentuated

at smaller sample sizes. In the case where the normal latent factor model

is correct, it is important to observe that the mixture factor analysis models

produce little bias for O”u similar to that of the normal factor model despite

being more complicated than necessary in this case where the normal model is

correct.

In contrast to the bias found using the normal factor model to estimate

”u in the presence of a latent factor with skew and kurtosis, there was no

substantial bias found for the linear relationship parameter œ1 using the normal

factor model, Table 2, even in the case of high skew/kurtosis for the underlying

latent factor. This result is not surprising given the theoretical work (Anderson &

Amemiya, 1988; Browne & Shapiro, 1988) showing that the estimators for the

linear factor analysis models using the maximum likelihood method assuming

normality for the underlying latent variables are asymptotically consistent even

if the normality assumption for the latent factors is violated. The mixture factor

analysis estimators, regardless of the number of components, perform equally

well in terms of bias for œ1.

Variability and root mean square error of the estimators. Inspection of

the boxplots in Figure 4 finds that there is substantially higher variability (i.e.,

lower efficiency) in the estimator from the mixture factor models, particularly

with 3 and 4 components and sample sizes 100 and 200. For example, in the high

skew/kurtosis factor case when the sample size is 100, the standard deviation

of the empirical sampling distribution of O”u using the normal factor model is

0.42 whereas for the mixture factor analysis model with 4 latent classes the

standard deviation is more than double that at 1.12. In the same scenario when

the sample size increases to 1,000, the variability of O”u obtained from the 4

component mixture factor analysis decreases to 0.20 and is closer to that of the

normal factor model estimator, which equals 0.12.

In contrast to the larger variability found for O”u using the mixture factor model

compared with the normal factor model, the linear factor loading estimator Oœ1

based on the mixture factor model shows better efficiency than the normal factor

model estimator when there is skew/kurtosis in the underlying factor, Table 2.

For example, in the high skew/kurtosis factor scenario when the sample size is

100, the standard deviation of the empirical sampling distribution of Oœ1 using the

normal factor model is larger, 0.17, compared with the mixture factor analysis
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296 WALL, GUO, AMEMIYA

model with 4 latent classes, which is 0.14. This efficiency gain for Oœ1 from the

mixture factor model compared with the normal factor model remains as sample

size increases, although the gain decreases in size.

In the scenarios where no skew/kurtosis exists in the underlying factor, we

find the mixture factor analysis models performing equally well in terms of

variability of both the estimators O”u and Oœ1 to the normal factor model (i.e., the

correct model in these scenarios). This is important because it might have been

expected that because the mixture model is more complex than need be in this

case, it would lose efficiency, but this does not appear to happen in the different

cases considered.

Given the trade-off between bias and variance for O”u (i.e., estimation using the

normal model is biased but less variable, whereas estimation using the mixture

models is less biased but more variable), we also examined the empirical root

mean square error (RMSE), which takes both into account. The empirical RMSE

is calculated as the square root of the average of . O”u � 1/2 or . Oœ1 � 0:7/2

over 200 simulated data sets where 1 and 0.7 correspond to the true values

for ”u and œ1, respectively. Figure 5 and Table 2 display the empirical RMSE

for all the estimators, O”u and Oœ1, across all the scenarios and smaller values

indicate better performance. In the high skew/kurtosis case, when we consider

O”u, we find that for small sample sizes (n D 100 and 200), as the number

of components increases, the performance decreases with the normal model

being the best and the 4-component model being the worst. As the sample

size increases to n D 1,000, the performance of the mixture factor analysis

models for O”u has improved and each has lower RMSE than the normal model.

A similar phenomenon occurs for mild skew/kurtosis case where the normal

model performs better at small sample sizes and by n D 500 and above the

mixture factor model estimators, O”u, perform similarly. We find in contrast to

O”u that the linear loading Oœ1 using a mixture factor model performs better at

all sample sizes when there is mild or high skew/kurtosis in the data. Finally,

comparing across levels of skew/kurtosis in Figure 5, we find the performance

of O”u is overall worse regardless of which estimator is used when there is more

skew/kurtosis in the latent factor (i.e., average RMSE in high skew/kurtosis case

is higher than mild or no skew/kurtosis), yet the performance for Oœ1 is not nearly

as affected overall by skew/kurtosis.

Coverage probability. Having summarized previously the performance of

the parameter estimators in terms of bias, variability, and RMSE, we now turn to

the examining their respective confidence intervals. The empirical 95% coverage

probabilities for O”u and Oœ1 using the different methods are shown in Table 2.

Note, with 200 simulated data sets, the simulation error for estimating coverage

probability is approximately ˙3%. The large downward bias found for O”u when
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MIXTURE FACTOR ANALYSIS 297

FIGURE 5 Empirical root mean square error (RMSE) for the different estimators, O”u

(top three plots), and Oœ1 (bottom three plots). RMSE is calculated across 200 simulated data

sets within each of 12 scenarios. Note. ML D maximum likelihood; y-axis scale change in

top graphs compared with bottom graphs.

the latent factor was assumed to be normal in the case of high skew/kurtosis leads

to coverage probabilities far from nominal 95% that only get worse as sample

size increased (39% coverage when n D 1,000 for ”u using the normal factor

model). Indeed, in the high skew/kurtosis scenario, the normal ML confidence

interval underestimated the true value for O”u in all cases where it did not cover

the true value. On the other hand, the coverage probability for the linear loading
Oœ1 using the normal ML confidence interval was good at all sample sizes and

skew/kurtosis levels. The mixture factor analysis model in the high skew/kurtosis

case had improving coverage for O”u as the number of components increased and

sample size was 200 and greater. Coverage probability for the mixture factor

model for Oœ1 was near nominal levels at sample size 500 and greater. In the

mild skew/kurtosis case, the coverage using the mixture factor models performed

similarly across the number of components with good coverage at all sample

sizes for O”u and nominal coverage for n D 500 and larger sample sizes for Oœ1.

In the no skew/kurtosis scenario for the latent factor, all methods showed good

coverage probability.
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298 WALL, GUO, AMEMIYA

Model Comparison and Empirical Choice of K

Which model does the data choose as best fitting? The traditional normal ML and

mixture factor analysis approaches are likelihood based, hence an information

criterion can be used to compare model fit. Here we present comparisons using

BIC but note the general trend of the results is very similar whether AIC or ABIC

were used. Table 3 presents the percentage of times out of the 200 simulated

data sets that the particular model was chosen based on the smallest BIC value.

Note that K D 1 corresponds to the normal ML case. Recall that in the case

of high and mild skew/kurtosis with Beta and chi-square distributions for the

latent factors, none of the models is exactly correct, whereas in the case of No

skew/kurtosis (i.e., normally distributed factor), the K D 1 model is the correct

model. First examining the high skew/kurtosis case we see that the normal

K D 1 model is practically never chosen. Furthermore, as the sample size

increases, the chosen model has increasing K indicating the data can support a

more complex model. Similar results are found for the mild skew/kurtosis case.

On the other hand, in the case where the true model is K D 1 we find that the

BIC always chooses the correct model for sample size 200 or greater and nearly

so in the smallest n D 100 case. Results using ABIC and AIC were similar to

Table 3 but with a tendency to choose larger K across all scenarios.

Does the best fitting model according to BIC result in “best performance”

in terms of estimators for ”u and œ1? The short answer is “yes” for œ1 and “it

depends on the sample size” for ”u. The last four rows of Table 3 show the

empirical RMSE associated with the estimator for œ1 and ”u chosen based on

TABLE 3

Top part of table: Percentage of times (out of 200 simulated data sets) K was chosena

based on BIC criterion under each scenario. Bottom part of table: Empirical root mean

square error (RMSE) for O”u and Oœ1 based on the ‘‘Best’’b estimator in each of the

200 simulated data sets.

High Skew/Kurtosis

Beta (.1, 30)

Mild Skew/Kurtosis

¦2

1

No Skew/Kurtosis

Normal

K n D 100 200 500 1,000 n D 100 200 500 1,000 n D 100 200 500 1,000

1 1 0 0 0 2 0 0 0 97 100 100 100

2 35 9 0 0 53 22 0 0 2 0 0 0

3 52 53 14 1 39 61 42 8 1 0 0 0

4 11 38 86 99 5 16 58 92 0 0 0 0

RMSE

O”u “Best” 1.07 0.61 0.34 0.20 0.60 0.33 0.17 0.11 0.45 0.24 0.15 0.10

O”u Normal 0.48 0.34 0.27 0.27 0.39 0.25 0.16 0.12 0.45 0.24 0.15 0.10
Oœ1 “Best” 0.13 0.08 0.05 0.03 0.11 0.07 0.04 0.03 0.11 0.08 0.05 0.04

Oœ1 Normal 0.17 0.10 0.06 0.04 0.12 0.08 0.05 0.04 0.11 0.08 0.05 0.04

aMixture factor models with K D 1 (normal), 2, 3, and 4 components were compared and the model with smallest Bayesian

Information Criterion (BIC) was chosen for K.
bThe “Best” estimator corresponds to the model with the smallest BIC.
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MIXTURE FACTOR ANALYSIS 299

whichever of the models with 1, 2, 3, or 4 components had the smallest BIC,

called “Best,” compared with the normal factor model (K D 1). Note that we

allow the “Best” estimator to be the K D 1 normal factor model estimator when

it has smallest BIC. Similar to what we found before and in Figure 5 when

considering the simulation results separately by the number of components, the

RMSE for the estimator of œ1 from the “Best” model is uniformly better than

the normal model (at all sample sizes) in the presence of skew and kurtosis. On

the other hand, the performance of the estimator for ”u from the “Best” model

is losing out to the simple normal model at sample sizes n D 100 and 200 and

is similar or better in terms of RMSE than the normal model when n D 500 or

greater.

Additional Simulation Scenarios That Vary the True Value of ”u

Substantial bias and poor coverage probability were found when using the

normal factor model estimator for the path between the latent factor and the

dichotomous outcome, ”u, in the case of high skew/kurtois, and it did not

improve as the sample size increased. Specifically, the true value of ”u in

the previous simulation study was 1 and the normal factor model estimated

it (on average in the case when n D 1,000 and High skew/kurtosis) to be 0.76.

Nevertheless, a pragmatic researcher may care less about biased estimation and

more about testing the parameter to be different from zero. Thus, it is important

to know what the Type I error and power are associated with the normal factor

model in the case with high skew/kurtosis. Following the same latent factor

model as before with 3 continuous and 1 dichotomous observed variables, using

the high skew/kurtosis latent factor distribution and a sample size n D 1,000,

five additional simulation scenarios were generated that included fixing the ”u at

0.0, 0.25, 0.5, 1.5, and 2 (in addition to 1, which it was fixed at originally). Two

hundred simulated data sets were used in each scenario and O”u were obtained

using the normal factor model and the mixture factor analysis model with 4

components.

Interesting results emerge regarding the performance of the normal factor

model, Table 4. Despite the high skew/kurtosis, the normal factor model estima-

tor of ”u was unbiased when ”u D 0 and had nominal (i.e., 0.05) Type I error. As

the true ”u increased, the downward bias in the normal factor model estimator

increased (bias of �0.85 when ”u D 2), but, despite the bias, it had near perfect

power to reject zero in all cases when ”u � 0:5. The mixture factor analysis

model estimator had nominal Type I error; slightly better power; and clearly

better bias, RMSE, and 95% coverage probability. Hence, whereas the mixture

factor model provides an overall better estimator of ”u in these cases of high

skew/kurtosis with n D 1,000, the normal factor model performs adequately for

the purpose of testing (i.e., it has correct Type I error and decent power).
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300 WALL, GUO, AMEMIYA

TABLE 4

Comparison of estimators for ”u from the normal factor model and mixture factor model

with 4 components in the high skew/kurtosis case with n D 1,000

at varying true values for ”u.

”u D 0.0 ”u D 0.25 ”u D 0.5 ”u D 1 ”u D 1.5 ”u D 2

Normal (K D 1)

Bias 0.00 0.00 �0.05 �0.24 �0.52 �0.85

RMSE 0.08 0.08 0.10 0.27 0.54 0.87

95% Coverage 0.95 0.96 0.88 0.39 0.05 0.01

Power to reject 0a 0.047 0.89 1.00 0.99 1.00 1.00

Mixture (K D 4)

Bias 0.00 0.01 0.00 0.02 0.03 0.05

RMSE 0.07 0.08 0.11 0.20 0.31 0.48

95% Coverage 0.96 0.96 0.95 0.94 0.94 0.93

Power to reject 0 0.042 0.93 1.00 1.00 1.00 0.99

Note. Empirical summaries are across 200 simulated data sets. All other parameters are fixed to

be the same as in the previous simulation.
aThe “Power to reject 0” is the percentage of times out of 200 that the absolute value of the

estimate divided by the standard error was greater than 1.96. When ”u D 0, the values for “Power

to reject 0” are equivalent to the empirical Type I error, which is nominally fixed at 0.05.

RMSE D empirical root mean square error.

Computational Issues

Generally, the more complicated the model, the more complicated the compu-

tation. In this simulation study, we find that under every scenario considered,

maximum likelihood using the normal factor model converged using Mplus

and in each case the maximum likelihood value was replicated at least once

with different starting values. To varying degrees, this was not the case for the

mixture factor models. Table 5 shows the percentage of times (out of the first

200 data sets generated for the first simulation study) that the model did not

converge. Two types of errors appear in Mplus output file indicating the model

did not converge correctly. They are, “The model estimation has reached a saddle

point or a point where the observed and the expected information matrices do

not match,” and “The model estimation did not terminate normally due to a

nonpositive definite Fisher information matrix.” In both cases Mplus adds the

following explanation/suggestion: “This is often due to the starting values but

may also be an indication of model nonidentification. Change your model and/or

starting values.” These problems of convergence occur more as the number of

components increases and when the sample size is smaller. Specifically, when

n D 100, the 4-component mixture factor model did not converge in 10%–

16% of the simulated data sets. But, when the sample size was n D 1,000 the

multicomponent mixture models only had convergence problems in the case with

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 1
2:

08
 0

5 
A

pr
il 

20
12

 



MIXTURE FACTOR ANALYSIS 301

TABLE 5

Summary of percentage of time computational issues arose in the simulation study using

the K D 2-, 3-, or 4-component mixture factor models.

High Skew/Kurtosis

Beta (.1, 30)

Mild Skew/Kurtosis

¦2

1

No Skew/Kurtosis

Normal

K n D 100 200 500 1,000 n D 100 200 500 1,000 n D 100 200 500 1,000

Nonconvergencea

2 2 0 0 0 1 0 0 0 1 4 3 6

3 6 1 0 0 2 0 0 0 4 3 4 4

4 14 4 0 0 10 4 2 0 16 9 7 6

Max not replicatedb

2 1 1 4 9 0 0 0 0 2 1 1 1

3 12 5 8 4 5 4 2 3 17 9 18 12

4 24 20 6 2 29 32 14 4 28 37 24 21

Collapse componentsc

2 0 0 0 0 1 0 0 0 1 1 2 1

3 9 1 0 0 3 0 0 0 4 6 3 3

4 29 9 2 0 13 9 1 0 19 12 3 3

a“Nonconvergence” indicates the maximum likelihood estimation in Mplus did not converge (i.e., Mplus

indicated a warning and did not produce parameter estimates).
bGiven that the model converged, “Max not replicated” indicates that the maximum likelihood estimators

reported are based on a maximum likelihood value that was not replicated across the 100 random starting values.
c“Collapse components” indicates that at least one of the parameters was held fixed by Mplus to avoid

singularity of the information matrix.

normally distributed data, not converging 4%–6% of the time. Our simulation

results presented earlier in Table 2 are based on 200 simulated data sets that

yielded converged model estimation across all four models. That is, if one of

the models did not converge for a particular data set, that data set was thrown

out for all the models and an additional data set was simulated. This was done

to ensure that we were comparing estimators from the different models based

on the same data sets.

Considering the data sets where all the models did converge, it was possible

for the maximum likelihood value to not be replicated across the 100 different

random starting values. This occurred more frequently as more components

were added and at smaller sample sizes, and like the convergence problem,

occurred more when the true underlying factor had no skew/kurtosis (i.e., the

scenario where the mixture factor model is more complicated than need be).

In the presence of skew/kurtosis with n � 200, the maximum likelihood value

associated with the 4-component mixture factor model was not replicated 20%–

32% of the time. In the scenario where the latent factor had no skew or kurtosis,

lack of replication for the 4-component model ranged from 21% to 37% and did

not diminish as the sample size increased. The warning given by Mplus when this

occurs is, “The best log-likelihood value was not replicated. The solution may

not be trustworthy due to local maxima. Increase the number of random starts.”
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302 WALL, GUO, AMEMIYA

One thing worth noting is that just because the best log-likelihood value was

not replicated across different starting values, this does not necessarily mean

that it is not the global maximum. And, on the other hand, just because the

best log-likelihood value was replicated, this does not confirm that the value is

indeed the global maximum. Hence based on this warning or lack thereof, one

cannot conclude definitively that the maximum likelihood value has been found.

This uncertainty is almost always present in numerical procedures for finding

maximums but is particularly pervasive in mixture modeling.

An additional warning is output by Mplus for some cases, which indicates

that “one or more parameters were fixed to avoid singularity of the information

matrix. The singularity is most likely because the model is not identified or

because of empty cells in the joint distribution of the categorical variables in

the model.” This warning happens predominately due to 2 components in the

mixture factor model having the same mean value, that is, ’0k is the same

for two different k, indicating the components are on top of each other and

hence cannot be distinguished. Essentially, this warning indicates the data do

not support an additional component in the mixture factor model. As expected,

this warning occurs more with more components in the model and smaller

sample size, occurring 13%–29% of the time with 4 components and n D 100.

There was no evidence of an association between the data sets with non-

replicated log-likelihoods and those that had one or more parameters fixed to

avoid singularity. This indicates that these warnings are associated with different

features of the observed data.

Further simulation investigation of warnings at smaller sample sizes.

The pervasiveness of warnings that occur in the mixture models with sample

sizes, n D 100 and 200, in the scenario with high skew/kurtosis begs the question

of whether the large RMSE found for the estimator of ”u using the 3- and

4-component models for these sample sizes is perhaps due to the numerical

procedure not appropriately finding the maximum likelihood value. To examine

this we employed two additional strategies targeting the high skew/kurtosis

scenario with sample sizes n D 100 and 200: (a) increased the number of random

starting values from 100 to 200 and (b) considered the resulting estimators only

for the cases where no warning was given.

When we reran the simulation with doubled random starting values, for

n D 100 for the 4, 3, and 2 component models, respectively, the likelihood was

not replicated 14%, 4%, and 0% and a warning about parameters being fixed to

avoid singularity occurred 24%, 3%, and 0%. For n D 200, the nonreplicated

likelihood occurred for the 4-, 3-, and 2-component models, respectively, 11%,

2%, and 1% and the fixed parameters to avoid singularity 5%, 0%, and 0%. So

there was some decrease in the warnings for nonreplicated likelihoods and pa-

rameters being fixed to avoid singularity. But, the important question is whether
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MIXTURE FACTOR ANALYSIS 303

this decrease in warnings (attributable to increasing the number of random

starting values) actually improved estimation of ”u. Somewhat surprisingly, the

answer was no. That is, the RMSE for 2, 3, and 4 components for n D 100 and

n D 200 were nearly exactly the same (within simulation error) of the values

presented in Table 2 when the random starting values were doubled.

We further examined the RMSE for ”u in the high skew/kurtosis case when

n D 100 and n D 200 just for those data sets where the maximum likelihood

value was replicated across all of the models. Again, these restricted RMSE

values were very similar to the ones previously reported and were not signif-

icantly different from the estimates in the data sets that had a warning that

the maximum value had not been replicated. However, a distinction in RMSE

was found in the n D 100 case with high skew/kurtosis using the 4-component

model when we compared the estimators from the data sets with and without the

warning indicating that parameters had been fixed (i.e., collapsed components)

compared to those with that warning. Specifically, the RMSE was lower without

this warning, 0.93 compared to 1.67 with the warning (which occured 24% of

the time). Thus, it appears that at least some part of the large variability in

the mixture factor analysis estimator at small sample sizes is due to parameters

being computationally fixed to avoid singularity of the information matrix.

ILLUSTRATIVE NUMERICAL EXAMPLE

The data presented here (Figure 3) are simulated data (available from the first

author), which closely mimic the correlations and skew/kurtosis observed in

the real data (Patterson et al., 2009). Cystic fibrosis (CF) is the most common

inherited life-shortening, multisystemic disease among Caucasians. A typical

treatment regimen includes daily chest physiotherapy, regular aerobic physical

activity, a high-calorie/high-fat diet in addition to the medications. It requires

regular, lifelong adherence to the treatment routine to obtain effective results. A

self-report questionnaire was administered to CF patients and three scales were

derived measuring emotional strains, appearance worries, and physical worries

such that higher values on the scales indicated more frequent strains or worries.

The Cronbach’s alpha for the 3 indicators of illness strains was 0.78. Researchers

hypothesized that the latent construct illness strains measured by the three scales

would increase the odds of nonadherence to treatment. It was also of interest

to consider potential covariates of gender and age. The data (n D 500) were

simulated from a model with chi-square 1 df underlying distribution (the mild

skew/kurtosis case in the simulation study section) so that the underlying factor

was related to nonadherence with a log odds ratio (logit) of 1 and covariates

of gender and uniformly distributed mean-centered age were generated in such
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304 WALL, GUO, AMEMIYA

a way that gender was significantly related to adherence but age was not after

controlling for the underlying factor.

Parameter Estimates and Inference

Based on results of the simulation study, these data, which exhibit skew in the

continuous observed variables ranging from 1.3 to 1.6 and kurtosis from 4.9 to

7.2, might be suspected to lead to some bias in the ”u parameter when a latent

factor model assuming normality is used. Furthermore, given the moderately

large sample size of n D 500, we expect a mixture factor model to be able

to improve the bias without dramatically increased variability in the estimator.

Table 6 presents the resulting estimates obtained from Mplus using 500 random

starting values. The first column in Table 6 provides benchmark values for what

each estimated relationship would be if the underlying factor were observed

(which it is in this case because it is simulated data).

We see that the normal factor model estimates of ”u (0.83 and 0.69 with-

out/with covariates, respectively) are smaller than the benchmark values (0.94

and 0.83, respectively) indicating downward bias as was seen in the simulation.

We note that a 95% confidence interval formed by taking ˙ 1.96 times the

TABLE 6

Parameter estimates (standard errors) from illustrative numerical example with n D 500

without covariates (top) and with covariates (bottom).

Regression on

f observed

Normal

Factor Model

Mixture-2

Factor Model

Mixture-3

Factor Model

Mixture-4

Factor Model

Without covariates

”u 0.94 (0.13) 0.83 (0.14) 0.89 (0.16) 0.94 (0.17) 0.91 (0.16)

œ1 0.72 (0.03) 0.68 (0.06) 0.70 (0.06) 0.72 (0.06) 0.74 (0.06)

BIC — 4,798 4,652 4,613 4,597

With covariates

”u 0.83 (0.14) 0.69 (0.14) 0.77 (0.16) 0.84 (0.17) 0.81 (0.17)

œ1 0.72 (0.03) 0.67 (0.06) 0.70 (0.06) 0.71 (0.06) 0.73 (0.06)

“1 (female) 0.55 (0.22) 0.58 (0.23) 0.56 (0.23) 0.53 (0.23) 0.54 (0.23)

“2 (age) 0.00 (0.04) 0.00 (0.04) 0.00 (0.04) �0.01 (0.04) 0.00 (0.04)

BIC — 4,702 4,571 4,541 4,535

Note. First column represents the estimates obtained from regressions on the actual simulated

values for the underlying factor and provides benchmark for comparison. Columns labeled Normal-1

and Mixture-2, 3, 4 present results corresponding to fitting the normal factor model and the mixture

factor models with respective number of components. For this example, the number of random

starting values was set at 500 for the initial iteration stage followed by iteration to convergence of

the best 50.

BIC D Bayesian Information Criterion.
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MIXTURE FACTOR ANALYSIS 305

standard error of the normal factor model estimator of ”u would cover the

benchmark value but not the true population value of 1 for the case with

covariates (i.e., 0.69 ˙ 1.96*0.14 does not cover 1). Based on the simulation

study we expected the estimate for the linear factor loading œ1 from the normal

model to perform well despite skew or kurtosis in the data and find that it is the

case. We also find the the covariate parameter estimates ( O“1 and O“2) based on

the normal factor model are very close to the benchmark estimates and in both

cases have 95% confidence intervals that surround the population values (0.30

and 0.00, respectively).

Both with and without covariates, the BIC indicates better fit (i.e., is smaller)

with increasing numbers of components up to 4. The BIC for the 5-component

model (estimates not shown) was larger (indicating worse fit) than the 4-

component model: BIC D 4,601 for 5 components without covariates and BIC D

4,562 with covariates. The mixture factor models correct the downward bias

seen for O”u in the normal factor model. That is, a 95% confidence interval

for the mixture factor model with 4 components (actually also for the 2- and

3-component models) surrounds the benchmark and population value for ”u

without and with covariates. Regarding variability, the standard errors of O”u for

the mixture factor models are slightly larger than those for the normal factor

model, but they are not more variable for the linear loading œ1 or the covariate

parameter estimates.

Factor Score Estimates

The main focus of this article has been on estimating model parameters (e.g.,

”u and œ1) using the mixture factor model compared with the normal factor

model in the presence or absence of skew/kurtosis in the underlying latent factor.

Although the distribution of the underlying factor has so far been considered a

nuisance, it is instructive to examine how the normal factor model compared with

the mixture factor model predicts the underlying factor values for individuals.

Figure 6 graphs the factor score estimates for this example from the normal

factor model and the mixture factor model with 4 components (Mixture-4 model)

without covariates and compares them with the true generated underlying factor

values. We first notice that the histogram of the factor scores from the normal

factor model do not look normal and are right skewed (albeit not as much) like

the true underlying factor. Despite the fact that the normal factor model assumes

normality for the latent factor, the posterior distribution of the latent factor given

the data, that is, the factor scores, which are calculated as the expected value

of f given the data and the model are not expected to be normal when the

data itself is not normal. However, as can be seen in the scatterplot of the

true underlying factor versus the factor scores from the normal factor model
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306 WALL, GUO, AMEMIYA

FIGURE 6 Histograms of simulated underlying factor values and factor score estimates

obtained from the normal factor model and the mixture factor model with 4 components

(Mix4) for the illustrative numerical example.

(Figure 7), the normal factor model has shrunk the large values down more than

it should (i.e., on the high end true values are larger than predicted by the normal

model) and it spreads out values on the low end more than it should (i.e., more

variability on the low end in the normal factor model predictions than there is

in the true latent factor). Both of these “misses” by the normal factor model are

corrected to some extent by the factor mixture model with 4 components. That

is, the factor score estimates from the mixture factor model line up more closely

with the true underlying factor values (bottom left of Figure 7). We further note

that the estimated probabilities of class membership found in the mixture factor

model with 4 components were 82.8%, 13.5%, 3.4%, and 0.2%. The component

with probability 0.2% included just one observation corresponding to the single

large value of the true underlying factor near 10. Thus, despite whether this

latent value might be described as an outlier or just a typical observation from a

skewed distribution (as it is here), the mixture factor model provides an accurate

predicted value for it.

DISCUSSION

In a latent factor model with both continuous and dichotomous observed vari-

ables, it was found that misspecifying the latent variable as normal and using

normal maximum likelihood leads to downward bias in the estimated path

relating the factor to the dichotomous outcome that worsens as the true la-

tent factor distribution deviates further from normality (e.g., becomes more
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MIXTURE FACTOR ANALYSIS 307

FIGURE 7 Q-Q plot comparisons of simulated underlying factor values with factor score

estimates obtained from the normal factor model and the mixture factor model with 4

components (Mix4) for the illustrative numerical example.

skewed and kurtotic) and also worsens as the true magnitude of the rela-

tionship becomes stronger. As a result of the bias, the coverage probability

for confidence intervals based on the normal factor model was very poor and

worsened as sample size increased. Interestingly, in contrast, the Type I error

and power associated with testing the path for the dichotomous outcome variable

using maximum likelihood assuming normality were not negatively affected by

the presence of skew and kurtosis in the latent factor. As expected based on

previous work (Anderson & Amemiya, 1988; Browne & Shapiro, 1988), the

linear factor loadings relating continuous observed variables to the underlying

latent factors estimated using normal ML were robust to misspecification of

normality of the latent factors. This study identified these properties through

a simulation study and proposed to alleviate the bias of the normal factor

model and potentially improve efficiency by weakening the distributional as-

sumption for the underlying latent variable using a mixture factor analysis

model.

The current application of the mixture factor analysis model considers the

distribution of the latent factor f a nuisance that is modeled solely in order to

obtain good estimation and inference for the target parameters of interest in the
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308 WALL, GUO, AMEMIYA

model (e.g., ”u and œ1). The mixture factor analysis model provides an attractive

solution to the problem of misspecification of the latent factor because it is a

very flexible means for modeling nonnormal continuous distributions and can

be directly implemented in Mplus. But, with flexibility comes variability and

based on the current simulation study, the variability in the estimators from the

mixture factor analysis model can be extreme for the path relating the factor to

the dichotomous outcome variable when sample sizes are small (n D 100 or 200)

in the case of high skew/kurtosis. Indeed for these smaller sample sizes, flexibly

approximating the nonnormal latent factor with a mixture factor analysis model

produced substantially worse RMSE for the path to the dichotomous outcome

variable than what was obtained by simply assuming normality. But, at sample

size 500 or greater, the mixture factor model performed better than the normal

factor model in the presence of skew/kurtosis for the path relating the latent

factor to the dichotomous outcome. Of note, even at smaller sample sizes, the

continuous variable linear factor loading estimator was less variable (i.e., more

efficient) using the mixture factor analysis model than the normal factor model.

The coverage probability for both estimators based on confidence intervals from

the mixture factor analysis models were near nominal for sample size 500 or

greater. Also, the mixture factor analysis model performed equally well to the

normal factor model in the case where there was no skew or kurtosis (i.e., where

the normal factor model was correct). Hence, the mixture factor analysis model

is a potentially useful estimation method for sample size 500 and greater given

its improvements in bias, coverage probability, and RMSE for paths relating

the factor to dichotomous and continuous observed variables compared with the

normal factor model.

In this study, results were examined separately by the number of mixture

components and also the BIC was used to choose the number of components.

Because the sampling distributions of the estimated paths relating the factor to

continuous and dichotomous observed variable behaved differently with respect

to increases in the number of underlying components, it is hard to conclude

which number of components was “optimal” in the different scenarios with

skew/kurtosis because it depends on what criteria is used. The BIC performed

well for identifying that only 1 component was needed in the scenario where

the true latent factor was normal. Previous simulation studies have suggested

that BIC performs well for identifying the “true” number of components (B.

Muthén, 2007; Nylund et al., 2007), but recall in our high and mild skew/kurtosis

scenarios there is not a “true” mixture model underlying the factor; it is simply

a nonnormal homogeneous distribution. Further study is needed to identify

a method for choosing the number of components that approximate the true

latent factor “well enough” in order to obtain parameter estimates with good

properties. At present we recommend the use of BIC to guide the choice of the

number of components but suggest limiting the upper value for K regardless of
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MIXTURE FACTOR ANALYSIS 309

BIC. In this study, limiting K to be 4 appeared to provide enough flexibility so

that the parameters of interest were well estimated with sample size 500 and

greater.

Computational problems were regularly encountered in Mplus with the mix-

ture factor analysis model when more components were fit and sample sizes

were small. A recent paper by An and Bentler (2011) introduces a variant of

the EM algorithm, namely, a Monte Carlo EM utilizing the Gibbs sampler. An

and Bentler (2011) fit mixture factor analysis models with both continuous and

dichotomous indicators and find in the data examples they considered that their

algorithm “outperforms estimation algorithms implemented in Mplus in terms

of estimation accuracy when the latent factor structure becomes more complex”

(p. 2643). At present their algorithm is not implemented in existing software

and it remains to be investigated whether it also has computational problems in

small sample sizes with increasing components.

We note that there are parallels between the results found here regarding

parameter estimation in the presence of misspecification of the latent factor

distribution and results from the mixed effects model literature. In particular,

paralleling the robustness property we found for the linear factor loading, several

studies have shown that maximum likelihood estimation for linear fixed effects

parameters based on Gaussian assumptions for the random effects is robust to

non-Gaussian random effects distributions (Butler & Louis, 1992; Verbeke &

Lesaffre, 1997; Zhang & Davidian, 2001). On the other hand, in the context of

generalized linear mixed effects models (with nonlinear links such as logistic as

for our dichotomous variable factor loading), there is evidence that random

effects parameter estimation may be severely compromised (Agresti, Caffo,

& Ohman-Strickland, 2004; Heagerty & Kurland, 2001; Litiere, Alonso, &

Molenberghs, 2007; Neuhaus, Hauck, & Kalbfleisch, 1992; Richardson & Green,

2002).

Of course, our findings and recommendations are limited to the extent of our

simulation experiment. There are a number of limitations that may encourage

future lines of research. First, we considered only one latent factor. It may

be that when using the mixture model approach to approximate a multivariate

vector of latent factors, its performance may not be as good because of the added

complexity of multiple dimensions. Second, the influence of the covariates within

the model needs to be explored further. We did not include covariates in our

simulation. This exclusion allowed us to pinpoint the effect of nonnormality of

the latent factor on the parameter estimates without confounding the issue of

covariate adjustment. It may be in some cases that the nonnormality of the latent

factor can be explained by certain nonnormally distributed observed predictor

variables and that conditional on the observed predictors, the latent factor is

indeed normal. Related to this, a careful examination of the interpretation of

the relationship between the predictors in the mixture model and the latent
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310 WALL, GUO, AMEMIYA

factors should be explored taking into account the predictors’ effect on the

factor potentially through their effect on the mixture components. It is also of

interest to explore the performance of the mixture model approach in models

with more indicators and in particular a larger proportion of noncontinuous

observed variables. Although not investigated, it seems that if there were a

larger proportion of dichotomous items, it might be more difficult to identify

the mixtures.

Finally, we note that other approaches instead of the mixture factor analysis

model may be considered for dealing with nonnormality of the latent factors. A

natural method to consider in comparison to the mixture of normals approach

used herein is a mixture of mass points approach. This method has been referred

to as “nonparametric maximum likelihood estimation” (Aitkin, 1999; Laird,

1978; Schafer, 2001; for a review see Skrondal & Rabe-Hesketh, 2004) and is

implementable in Mplus (see example 7.26 in the Mplus 6 manual). Within the

item response theory (IRT) setting (i.e., all dichotomous or ordered categorical

observed variables measuring a single latent factor), Mislevy (1984) presents,

in a mathematical exposition, several parametric methods for estimating the

latent distribution in an IRT model including a method similar to the mixture of

normals approach presented herein. Also within the IRT setting, nontrivial bias

has been found in parameter estimates when normal IRT models are fit to data

where the latent distribution is nonnormal (van den Oord, 2005; Zwinderman

& Wollenberg, 1990). A method called Ramsay-curve IRT (Woods, 2006) was

developed specifically to assess and correct for potential nonnormality in the

latent factor within an IRT model. This spline-based method decreases bias

similar to the mixture factor model approach and would be of interest to compare

in future work. Software to implement the Ramsay-curve IRT, called RCLOG,

is available (Woods & Thissen, 2004) but is not yet included in standard latent

variable modeling packages such as Mplus.

In summary, this study contributes to understanding the influence of nonnor-

mality in the estimation of model parameters in a latent factor model including

both continuous and dichotomous outcome variables, and further we have in-

troduced a potentially viable (readily implementable) mixture factor analysis

approach for improved estimation in such cases.
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